
phpspec Documentation
Release 5.x

Konstantin Kudryashov (everzet), Marcello Duarte (_md)

Jun 27, 2019





Contents

1 Introduction 3

2 Installation 5

3 Getting Started 7

4 Prophet Objects 11

5 Let and Let Go 15

6 Upgrading to PhpSpec 4 17

7 Upgrading to phpspec 3 19

8 Configuration 23

9 Running phpspec 27

10 Object Construction 31

11 Matchers 35

12 Templates 47

13 Extensions 49

14 Working with Wrapped Objects 51

i



ii



phpspec Documentation, Release 5.x

Create a composer.json file:

{
"require-dev": {

"phpspec/phpspec": "^4.0"
},
"config": {

"bin-dir": "bin"
},
"autoload": {"psr-0": {"": "src"}}

}

Follow the instructions on this page to install composer: https://getcomposer.org/download/.

Install phpspec with composer:

php composer.phar install

Start writing specs:

bin/phpspec desc Acme/Calculator

Learn more from the documentation.

Contents 1

https://getcomposer.org/download/


phpspec Documentation, Release 5.x

2 Contents



CHAPTER 1

Introduction

1.1 Spec BDD with phpspec

phpspec is a tool which can help you write clean and working PHP code using behaviour driven development or BDD.
BDD is a technique derived from test-first development.

BDD is a technique used at story level and spec level. phpspec is a tool for use at the spec level or SpecBDD. The
technique is to first use a tool like phpspec to describe the behaviour of an object you are about to write. Next you
write just enough code to meet that specification and finally you refactor this code.

1.2 SpecBDD and TDD

There is no real difference between SpecBDD and TDD. The value of using an xSpec tool instead of a regular xUnit
tool for TDD is the language. The early adopters of TDD focused on behaviour and design of code. Over time the
focus has shifted towards verification and structure. BDD aims to shift the focus back by removing the language of
testing. The concepts and features of the tool will keep your focus on the “right” things.

1.3 SpecBDD and StoryBDD

StoryBDD tools like Behat help to understand and clarify the domain. They help specify feature narratives, their needs,
and what we mean by them. With SpecBDD we are only focused on the how, in other words, the implementation. You
are specifying how your classes will achieve those features.

Only using story level BDD will not do enough to help you write the code for the features well. Each feature is likely
to need quite a lot of code. If you only confirm that the whole feature works and also only refactor at that point then
you are working in large steps. SpecBDD tools guide you in the process by letting you write the code in small steps.
You only need to write the spec and then the code for the next small part you want to work on and not the whole
feature.

StoryBDD and SpecBDD used together are an effective way to achieve customer-focused software.

3

http://behat.org


phpspec Documentation, Release 5.x

4 Chapter 1. Introduction



CHAPTER 2

Installation

phpspec is a php 5.6+ library that you’ll have in your project development environment. Before you begin, ensure
that you have PHP 5.6 or 7 installed.

2.1 Installation process:

You can install phpspec with all its dependencies through Composer. Follow instructions on the composer website if
you don’t have it installed yet.

N.b.: You will need to ensure that your Composer autoload settings are correct. phpspec will not be able to
detect classes, even ones it has created, unless this is working. This is a common issue which causes confusion when
installing phpspec.

The autoload section of your composer.json file may look something like this:

"autoload": {
"psr-0": {

"": "src/"
}

}

2.2 Method #1 (Composer command):

You can use this Composer command to install phpspec:

composer require --dev phpspec/phpspec

5

https://getcomposer.org/download/


phpspec Documentation, Release 5.x

2.3 Method #2 (Composer config file):

If you prefer editing your composer.json file manually, add phpspec to your require-dev section like this:

{
"require-dev": {

"phpspec/phpspec": "[your preferred version]"
},
"config": {

"bin-dir": "bin"
},
"autoload": {

"psr-0": {
"": "src/"

}
}

}

Then install phpspec with the composer install command:

$ composer install

2.4 Result:

phpspec with its dependencies will be installed inside the vendor folder. The phpspec executable will be available at
vendor/bin/phpspec, or wherever you have specified in your composer.json file’s bin-dir setting. See
the composer docs for more information

6 Chapter 2. Installation

https://getcomposer.org/doc/04-schema.md#bin


CHAPTER 3

Getting Started

Say you are building a tool that converts Markdown into HTML. Well, that’s a large task. But you can work on simple
things first and a design will emerge that will reach all the necessary features.

What is the simplest thing you could add? It should convert a string line into a paragraph with HTML markup, i.e.
“Hi, there” would become “<p>Hi, there</p>”.

So you can start by doing this. Well, not the boring bits. Let phpspec take care of the boring stuff for you. You just
need to tell phpspec you will be working on the Markdown class.

$ bin/phpspec desc Markdown
Specification for Markdown created in spec.

You can also specify a fully qualified class name. Don’t forget that if you use backslashes you need to pass the class
name inside double quotes. Alternatively you could use forward slashes and skip the quotes. phpspec will create the
folder structure following PSR standards.

Ok. What have you just done? phpspec has created the spec for you! You can navigate to the spec folder and see the
spec there:

<?php

namespace spec;

use Markdown;
use PhpSpec\ObjectBehavior;
use Prophecy\Argument;

class MarkdownSpec extends ObjectBehavior
{

function it_is_initializable()
{

$this->shouldHaveType(Markdown::class);
}

}

7

http://en.wikipedia.org/wiki/Markdown


phpspec Documentation, Release 5.x

So what do you have here? Your spec extends the special ObjectBehavior class. This class is special, because
it gives you the ability to call all the methods of the class you are describing and match the result of the operations
against your expectations.

3.1 Examples

The object behavior is made up of examples. Examples are encased in public methods, started with it_ or its_.

phpspec searches for these methods in your specification to run.

Why are underscores used in example names? just_because_its_much_easier_to_read than
someLongCamelCasingLikeThat.

3.2 Specifying behaviour

Now we are ready to move on. Let’s update that first example to express your next intention:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MarkdownSpec extends ObjectBehavior
{

function it_converts_plain_text_to_html_paragraphs()
{

$this->toHtml("Hi, there")->shouldReturn("<p>Hi, there</p>");
}

}

Here you are telling phpspec that your object has a toHtml method. You are also telling it that this method should
return “<p>Hi, there</p>”. Now what? Run the specs. You may not believe this, but phpspec will understand you are
describing a class that doesn’t exist and offer to create it!

$ bin/phpspec run

> spec\Markdown

it converts plain text to html paragraphs
Class Markdown does not exist.

Do you want me to create it for you? [Y/n]

phpspec will then place the empty class in the directory. Run your spec again and. . . OK, you guessed:

$ bin/phpspec run

> spec\Markdown

it converts plain text to html paragraphs
Method Markdown::toHtml() not found.

Do you want me to create it for you? [Y/n]

8 Chapter 3. Getting Started



phpspec Documentation, Release 5.x

What you just did was moving fast through the amber state into the red.

<?php

class Markdown
{

public function toHtml($argument1)
{

// TODO: write logic here
}

}

You got rid of the fatal errors and ugly messages that resulted from non-existent classes and methods and went straight
into a real failed spec:

$ bin/phpspec run

> spec\Markdown

it converts plain text to html paragraphs
Expected "<p>Hi, there</p>", but got null.

1 examples (1 failed)
284ms

You can change the generated specs and classes using templates.

According to the TDD rules you now have full permission to write code. Red means “time to add code”; red is great!
Now you can add just enough code to make the spec green, quickly. There will be time to get it right, but first just get
it green.

<?php

class Markdown
{

public function toHtml()
{

return "<p>Hi, there</p>";
}

}

And voilà:

$ bin/phpspec run

> spec\Markdown

XXX it converts plain text to html paragraphs

1 examples (1 passed)
247ms

There are heaps of resources out there already if you would like to read more about the TDD/SpecBDD cycle. Here
are just a couple for you to look at:

1. The Rspec Book Development with RSpec, Cucumber, and Friends by David Chelimsky, Dave Astels, Zach
Dennis, Aslak Hellesøy, Bryan Helmkamp, Dan North

3.2. Specifying behaviour 9

http://www.amazon.com/RSpec-Book-Behaviour-Development-Cucumber/dp/1934356379


phpspec Documentation, Release 5.x

2. Test Driven Development: By Example Kent Beck

In the example here you specified the value the toHtml method should return by using one of phpspec’s matchers.
There are several other matchers available, you can read more about these in the Matchers Cookbook

3.3 Skipping examples

It may happen that some of your examples will depend on some environment requirements. For example, it might
need a php extension or a minimal php version. In that case, you don’t want your examples to fail because phpspec is
unable to run them.

phpspec allows to easily skip an example by throwing a SkippingException wherever you feel the need for it.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use PhpSpec\Exception\Example\SkippingException;

class RocketSpec extends ObjectBehavior
{

function it_flies_around_the_moon()
{

if (!function_exists('rocket_launch')) {
throw new SkippingException(

'The rocket extension is not installed'
);

}
$this->flyToTheMoon();

}
}

An extension is also available to skip examples regarding a class/interface was not found. It can be found here:
https://github.com/akeneo/PhpSpecSkipExampleExtension

10 Chapter 3. Getting Started

http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
https://github.com/akeneo/PhpSpecSkipExampleExtension


CHAPTER 4

Prophet Objects

4.1 Stubs

You also need your Markdown parser to be able to format text fetched from an external source such as a file. You
decide to create an interface so that you can have different implementations for different types of source.

<?php

namespace Markdown;

interface Reader
{

public function getMarkdown();
}

You want to describe a method which has an instance of a Reader as an argument. It will call
Markdown\Reader::getMarkdown() to get the markdown to format. You have not yet written any imple-
mentations of Reader to pass into the method though. You do not want to get distracted by creating an implementation
before you can carry on writing the parser. Instead we can create a fake version of Reader called a stub and tell
phpspec what Markdown\Reader::getMarkdown() should return.

You can create a stub by telling phpspec that you want it to be a double of the MarkdownReader interface:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MarkdownSpec extends ObjectBehavior
{

function it_converts_text_from_an_external_source($reader)
{

$reader->beADoubleOf('Markdown\Reader');

(continues on next page)

11



phpspec Documentation, Release 5.x

(continued from previous page)

$this->toHtmlFromReader($reader)->shouldReturn("<p>Hi, there</p>");
}

}

At the moment calling Markdown\Reader::getMarkdown() will return null. We can tell phpspec what we
want it to return though.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MarkdownSpec extends ObjectBehavior
{

function it_converts_text_from_an_external_source($reader)
{

$reader->beADoubleOf('Markdown\Reader');
$reader->getMarkdown()->willReturn("Hi, there");

$this->toHtmlFromReader($reader)->shouldReturn("<p>Hi, there</p>");
}

}

Now you can write the code that will get this example to pass. As well as refactoring your implementation you should
see if you can refactor your specs once they are passing. In this case we can tidy it up a bit as phpspec lets you create
the stub in an easier way. If you use a typehint, phpspec determine the required type of the collaborator:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Reader;

class MarkdownSpec extends ObjectBehavior
{

function it_converts_text_from_an_external_source(Reader $reader)
{

$reader->getMarkdown()->willReturn("Hi, there");

$this->toHtmlFromReader($reader)->shouldReturn("<p>Hi, there</p>");
}

}

phpspec 2.* supports the use of @param annotations instead of parametric typehints for this purpose. However, this
functionality is removed in phpspec 3.0.

4.2 Mocks

You also need to be able to get your parser to output to somewhere instead of just returning the formatted text. Again
you create an interface:

12 Chapter 4. Prophet Objects



phpspec Documentation, Release 5.x

<?php

namespace Markdown;

interface Writer
{

public function writeText($text);
}

You again pass it to the method but this time the Markdown\Writer::writeText($text) method does not
return something to your parser class. The new method you are going to create on the parser will not return anything
either. Instead it is going to give the formatted text to the MarkdownWriter so you want to be able to give an example
of what that formatted text should be. You can do this using a mock, the mock gets created in the same way as the stub.
This time you tell it to expect Markdown\Writer::writeText($text) to get called with a particular value:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Writer;

class MarkdownSpec extends ObjectBehavior
{

function it_outputs_converted_text(Writer $writer)
{

$writer->writeText("<p>Hi, there</p>")->shouldBeCalled();

$this->outputHtml("Hi, there", $writer);
}

}

Now if the method is not called with that value then the example will fail.

The shouldBeCalled method should be used before any SUS (System Under Spec) calls in order to make an exam-
ple fail if other mock methods are invoked. In the previous example, if other methods than writeText are called in
outputHTML (that is the SUS) function, the test will fail. PHPSpec won’t prevent you to use shouldBeCalled after
SUS calls: this is not recommended as shouldBeCalled would behave as shouldHaveBeenCalled. To understand how
shouldHaveBeenCalled behaves, please continue reading.

4.3 Spies

Instead of using a mock you could use a spy. The difference is that you check what happened after the object’s
behaviour has happened:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Writer;

class MarkdownSpec extends ObjectBehavior
{

function it_outputs_converted_text(Writer $writer)
(continues on next page)

4.3. Spies 13



phpspec Documentation, Release 5.x

(continued from previous page)

{
$this->outputHtml("Hi, there", $writer);

$writer->writeText("<p>Hi, there</p>")->shouldHaveBeenCalled();
}

}

The difference is in behaviour: when using spies, you will not be forced to check every call that happens on double
object

14 Chapter 4. Prophet Objects



CHAPTER 5

Let and Let Go

If you need to pass the object into the constructor instead of a method then you can do it like this:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Writer;

class MarkdownSpec extends ObjectBehavior
{

function it_outputs_converted_text(Writer $writer)
{

$this->beConstructedWith($writer);
$writer->writeText("<p>Hi, there</p>")->shouldBeCalled();

$this->outputHtml("Hi, there");
}

}

If you have many examples then writing this in each example will get tiresome. You can instead move this to a let
method. The let method gets run before each example so each time the parser gets constructed with a fresh mock
object.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Writer;

class MarkdownSpec extends ObjectBehavior
{

function let(Writer $writer)

(continues on next page)

15



phpspec Documentation, Release 5.x

(continued from previous page)

{
$this->beConstructedWith($writer);

}
}

There is also a letGo method which runs after each example if you need to clean up after the examples.

It looks like you will now have difficulty getting hold of the instance of the mock object in the examples. This is easier
to deal with than it looks though. Providing you use the same variable name for both, phpspec will inject the same
instance into the let method and the example. The following will work:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Writer;

class MarkdownSpec extends ObjectBehavior
{

function let(Writer $writer)
{

$this->beConstructedWith($writer);
}

function it_outputs_converted_text($writer)
{

$writer->writeText("<p>Hi, there</p>")->shouldBeCalled();

$this->outputHtml("Hi, there");
}

}

16 Chapter 5. Let and Let Go



CHAPTER 6

Upgrading to PhpSpec 4

Here is a guide to upgrading a test suite or an extension, based on BC-breaking changes made in phpspec 4.

6.1 Upgrading for Users

If you are using 3rd party phpspec extensions, you may have to increase the version numbers for those as well.

As PHP 5 is no longer supported language versions, you will need to upgrade to PHP 7 to use phpspec 4.

Most methods in PhpSpec now have static type hints and return types, this will affect you when you are overriding
behaviour from a parent class or implementing an interface.

If you are providing inline matchers in your specs you will need to provide the array type hint:

function getMatchers()
{

// return some matchers
}

Change to:

function getMatchers() : array
{

// return some matchers
}

If you are providing custom matchers, you will need to conform to the type hint changes in the Matcher interface.

6.2 Upgrading for Extension Authors

Many PhpSpec interfaces and internal classes have had scalar typehints and return typehinting added. You will need
to update your implementations of these interfaces to the new method signature.

17



phpspec Documentation, Release 5.x

18 Chapter 6. Upgrading to PhpSpec 4



CHAPTER 7

Upgrading to phpspec 3

Here is a guide to upgrading a test suite or an extension, based on BC-breaking changes made in phpspec 3.

7.1 Upgrading for Users

If you are using 3rd party phpspec extensions, you may have to increase the version numbers for those as well.

As PHP 5.5 and below are no longer supported language versions, you will need to upgrade to PHP 5.6 or 7.0+ to use
phpspec 3.

Where you have used @param annotations for spec examples, to indicate the required type for a collaborator, you will
need to remove these and use explicit typehinting in the method signature instead. For example:

/**
* @param \stdClass $collaborator

*/
function it_does_something_with_a_stdclass($collaborator)

Change to:

function it_does_something_with_a_stdclass(\stdClass $collaborator)

Extension configured in your phpspec.yml needs to be changed from:

some_extension_config: foo

extensions:
- SomeExtension
- SomeOtherExtension

To:

19



phpspec Documentation, Release 5.x

extensions:
SomeExtension:

some_config: foo

SomeOtherExtension: ~

7.2 Upgrading for Extension Authors

Several interfaces have been renamed in phpspec 3.0. Here is a quick guide to changes you will need to make in your
code.

• PhpSpec\Console\IO is now PhpSpec\Console\ConsoleIO

• PhpSpec\IO\IOInterface is now PhpSpec\IO\IO

• PhpSpec\Locator\ResourceInterface is now PhpSpec\Locator\Resource

• PhpSpec\Locator\ResourceLocatorInterface is now PhpSpec\Locator\ResourceLocator

• PhpSpec\Formatter\Presenter\PresenterInterface is now
PhpSpec\Formatter\Presenter\Presenter

• PhpSpec\CodeGenerator\Generator\GeneratorInterface is now
PhpSpec\CodeGenerator\Generator\Generator

• PhpSpec\Extension\ExtensionInterface is now PhpSpec\Extension

• Phpspec\CodeAnalysis\AccessInspectorInterface is now Phpspec\CodeAnalysis\AccessInspector

• Phpspec\Event\EventInterface is now Phpspec\Event\PhpSpecEvent

• PhpSpec\Formatter\Presenter\Differ\EngineInterface is now
PhpSpec\Formatter\Presenter\Differ\DifferEngine

• PhpSpec\Matcher\MatcherInterface is now PhpSpec\Matcher\Matcher

• PhpSpec\Matcher\MatchersProviderInterface is now PhpSpec\Matcher\MatchersProvider

• PhpSpec\SpecificationInterface is now PhpSpec\Specification

• PhpSpec\Runner\Maintainer\MaintainerInterface is now PhpSpec\Runner\Maintainer\Maintainer

Some methods have a different signature:

• PhpSpec\CodeGenerator\Generator\PromptingGenerator#__construct’s third and fourth
arguments are now mandatory

• PhpSpec\Matcher\ThrowMatcher#__construct’s third argument is now mandatory

• PhpSpec\Extension#load has now an additional mandatory array $params argument.

A few methods have been renamed in phpspec 3.0:

• PhpSpec\ServiceContainer#set is now PhpSpec\ServiceContainer#define

• PhpSpec\ServiceContainer#setShared is now PhpSpec\ServiceContainer#define

Other things to bear in mind:

• PhpSpec\ServiceContainer is now an interface (available implementation:
PhpSpec\ServiceContainer\IndexedServiceContainer)

20 Chapter 7. Upgrading to phpspec 3



phpspec Documentation, Release 5.x

• PhpSpec\ServiceContainer\ServiceContainer#getByPrefix has been replaced
by PhpSpec\ServiceContainer\ServiceContainer#getByTag. Tags can be set via
PhpSpec\ServiceContainer\ServiceContainer#define’s third argument

7.2. Upgrading for Extension Authors 21



phpspec Documentation, Release 5.x

22 Chapter 7. Upgrading to phpspec 3



CHAPTER 8

Configuration

Some things in phpspec can be configured in a phpspec.yml, .phpspec.yml, or phpspec.yml.dist file in
the root of your project (the directory where you run the phpspec command).

You can use a different config file name and path with the --config option:

$ bin/phpspec run --config path/to/different-phpspec.yml

You can use the .yaml extension in place of .yml if preferred.

You can also specify default values for config variables across all repositories by creating the file .phpspec.yml in
your home folder (Unix systems). phpspec will use your personal preference for all settings that are not defined in the
project’s configuration.

8.1 PSR-4

phpspec can try to autodetect your naming scheme by querying Composer for autoload rules you can define in the
Composer manifest. If unsuccessful, it assumes a PSR-0 mapping of namespaces to the src and spec directories by
default. So for example running:

$ bin/phpspec describe Acme/Text/Markdown

Will create a spec in the spec/Acme/Text/MarkdownSpec.php file and the class will be created in src/
Acme/Text/Markdown.php

To use PSR-4 you configure the namespace and psr4_prefix options in a suite to the part that should be omitted
from the directory structure:

suites:
acme_suite:

namespace: Acme\Text
psr4_prefix: Acme\Text

With this config running:

23



phpspec Documentation, Release 5.x

$ bin/phpspec describe Acme/Text/Markdown

will now put the spec in spec/MarkdownSpec.php and the class will be created in src/Markdown.php.

Alternatively, you can choose to use Composer to provide the necessary configuration:

composer_suite_detection: true # translates to:
# - root_directory: '.'
# - spec_prefix: spec

8.2 Spec and source locations

The default locations used by phpspec for the spec files and source files are spec and src respectively. You may find
that this does not always suit your needs. You can specify an alternative location in the configuration file. You cannot
do this at the command line as it does not make sense for a spec or source files path to change at runtime.

You can specify alternative values depending on the namespace of the class you are describing. In phpspec, you can
group specification files by a certain namespace in a suite. For each suite, you have several configuration settings:

• namespace - The namespace of the classes. Used for generating spec files, locating them and generating code;

• spec_prefix [default: spec] - The namespace prefix for specifications. The complete namespace for
specifications is %spec_prefix%\%namespace%;

• src_path [default: src] - The path to store the generated classes. By default paths are relative to the
location where phpspec was invoked. phpspec creates the directories if they do not exist. This does not include
the namespace directories;

• spec_path [default: .] - The path of the specifications. This does not include the spec prefix or namespace.

• psr4_prefix [default: null] - A PSR-4 prefix to use.

Some examples:

suites:
acme_suite:

namespace: Acme\Text
spec_prefix: acme_spec

# shortcut for
# my_suite:
# namespace: The\Namespace
my_suite: The\Namespace

Tip: You may use %paths.config% in src_path and spec_path making paths relative to the location of the
config file.

Some examples:

suites:
acme_suite:

namespace: Acme\Text
spec_prefix: acme_spec
src_path: '%paths.config%/src'
spec_path: '%paths.config%'

24 Chapter 8. Configuration



phpspec Documentation, Release 5.x

phpspec will use suite settings based on the namespaces. If you have suites with different spec directories then
phpspec run will run the specs from each of the directories using the relevant suite settings.

When you use phpspec desc phpspec creates the spec using the matching configuration. E.g. phpspec desc
Acme/Text/MyClass will use the the namespace acme_spec\Acme\Text\MyClass.

If the namespace does not match one of the namespaces in the suites config then phpspec uses the default settings. If
you want to change the defaults then you can add a suite without specifying the namespace.

suites:
#...
default:

spec_prefix: acme_spec
spec_path: acmes-specs
src_path: acme-src

You can just set this suite if you wanted to override the default settings for all namespaces. Since phpspec matches on
namespaces you cannot specify more than one set of configuration values for a null namespace. If you do add more
than one suite with a null namespace then phpspec will use the last one defined.

Note that the default spec directory is ., specs are created in the spec directory because it is the first part of the spec
namespace. This means that changing the spec_path will result in additional directories before spec not instead of it.
For example, with the config:

suites:
acme_suite:

namespace: Acme\Text
spec_prefix: acme_spec

running:

$ bin/phpspec describe Acme/Text/Markdown

will create the spec in the file acme_spec/spec/Acme/Text/MarkdownSpec.php

8.3 Formatter

You can also set another default formatter instead of progress. The --format option of the command can override
this setting. To set the formatter, use formatter.name:

formatter.name: pretty

The formatters available by default are:

• progress (default)

• html/h

• pretty

• junit

• dot

• tap

More formatters can be added by extensions.

8.3. Formatter 25



phpspec Documentation, Release 5.x

8.4 Options

You can turn off code generation in your config file by setting code_generation:

code_generation: false

You can also set your tests to stop on failure by setting stop_on_failure:

stop_on_failure: true

Moreover you can turn on verbosity by setting verbose:

verbose: true

As PHPSpec does not have a distinction between canonicals verbosity levels (-v, -vv, -vvv) you cannot specify it
through configuration file. As a matter of fact running PHPSpec with any of these flags as unix command option, will
result in the same output. If you run the command with -q or --quite the verbose options will be overridden.

8.5 Extensions

To register phpspec extensions, use the extensions option. This is an array of extension classes:

extensions:
- PhpSpec\Symfony2Extension\Extension

8.6 Custom matchers

You may want to make custom matchers available in all specs. Custom matchers can be registered by extension, but
there is a simplier way: use the matchers setting and provide an array of matcher classes. Each of them must
implement PhpSpec\Matcher\Matcher interface:

matchers:
- Acme\Matchers\ValidJsonMatcher
- Acme\Matchers\PositiveIntegerMatcher

8.7 Bootstrapping

There are times when you would be required to load classes and execute additional statements that the Composer-
generated autoloader may not provide, which is likely for a legacy project that wants to introduce phpspec for designing
new classes that may rely on some legacy collaborators.

To load a custom bootstrap when running phpspec, use the bootstrap setting:

bootstrap: path/to/different-bootstrap.php

This setting should be in the root of the config file (i.e. not nested under suites or anything else).

26 Chapter 8. Configuration



CHAPTER 9

Running phpspec

The phpspec console command uses Symfony’s console component. This means that it inherits the default Symfony
console command and options.

phpspec has an additional global option to let you specify a config file other than phpspec.yml, .phpspec.yml, or
phpspec.yml.dist:

$ bin/phpspec run --config path/to/different-phpspec.yml

or:

$ bin/phpspec run -c path/to/different-phpspec.yml

Read more about this in the Configuration Cookbook

Also of note is that using the --no-interaction option means that no code generation will be done.

phpspec has the global option to let you specify a custom bootstrap or autoloading script.

$ bin/phpspec run --bootstrap=path/to/different-bootstrap.php

or:

$ bin/phpspec run -b path/to/different-bootstrap.php

9.1 Describe Command

The describe command creates a specification for a class:

$ bin/phpspec describe ClassName

Will generate a specification ClassNameSpec in the spec directory.

27

http://symfony.com/doc/current/components/console/usage.html
http://symfony.com/doc/current/components/console/usage.html


phpspec Documentation, Release 5.x

$ bin/phpspec describe Namespace/ClassName

Will generate a namespaced specification NamespaceClassNameSpec. Note that / is used as the separator. To use \
it must be quoted:

$ bin/phpspec describe "Namespace\ClassName"

The describe command has no additional options. It will create a spec class in the spec directory. To configure a
different path to the specs you can use suites in the configuration file.

9.2 Run Command

The run command runs the specs:

$ bin/phpspec run

Will run all the specs in the spec directory.

$ bin/phpspec run spec/ClassNameSpec.php

Will run only the ClassNameSpec.

$ bin/phpspec run spec/ClassNameSpec.php:56

Will run only specification defined in the ClassNameSpec on line 56.

You can run just the specs in a directory with:

$ bin/phpspec run spec/Markdown

Which will run any specs found in spec/Markdown and its subdirectories. Note that it is the spec location and not
namespaces that are used to decide which specs to run. Any spec which has a namespace which does not match its file
path will be ignored.

By default, you will be asked whether missing methods and classes should be generated. You can suppress these
prompts and automatically choose not to generate code with:

$ bin/phpspec run --no-code-generation

You can choose to stop on failure and avoid running the remaining specs with:

$ bin/phpspec run --stop-on-failure

TDD work cycle can be described using three steps: Fail, Pass, Refactor. If you create a failing spec for a new method,
the next step will be to make it pass. The easiest way to achieve it, is to simply hard code the method, so it returns the
expected value.

phpspec can do that for you.

You can opt to automatically fake return values with:

$ bin/phpspec run --fake

You can choose the output format with the --format option e.g.:

28 Chapter 9. Running phpspec



phpspec Documentation, Release 5.x

$ bin/phpspec run --format=dot

The formatters available by default are:

• progress (default)

• html

• pretty

• junit

• dot

More formatters can be added by extensions.

9.2. Run Command 29



phpspec Documentation, Release 5.x

30 Chapter 9. Running phpspec



CHAPTER 10

Object Construction

In phpspec specs the object you are describing is not a separate variable but is $this. So instead of writing something
like:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MarkdownSpec extends ObjectBehavior
{

function it_converts_plain_text_to_html_paragraphs()
{

$markdown = new Markdown();
$markdown->toHtml("Hi, there")->shouldReturn("<p>Hi, there</p>");

}
}

as you might with other tools, you write:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MarkdownSpec extends ObjectBehavior
{

function it_converts_plain_text_to_html_paragraphs()
{

$this->toHtml("Hi, there")->shouldReturn("<p>Hi, there</p>");
}

}

31



phpspec Documentation, Release 5.x

On consequence this means that you do not construct the object you are describing in the examples. Instead phpspec
handles the creation of the object you are describing when you run the specs.

The default way phpspec does this is the same as new Markdown(). If it does not need any values or dependencies
to be passed to it then this is fine but for many objects this will not be good enough. You can tell phpspec how you
want it to create the object though.

10.1 Using the Constructor

You can tell phpspec to pass values to the constructor when it constructs the object:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Writer;

class MarkdownSpec extends ObjectBehavior
{

function it_outputs_converted_text(Writer $writer)
{

$this->beConstructedWith($writer);
$writer->writeText("<p>Hi, there</p>")->shouldBeCalled();

$this->outputHtml("Hi, there");
}

}

10.2 Using a Factory Method

You may not want to use the constructor but use static factory methods to create the class. This allows you to create it
in different ways for different use cases since you can only have a single constructor in PHP.

<?php

use Markdown\Writer;

class Markdown
{

public static function createForWriting(Writer $writer)
{

$markdown = new Self();
$markdown->writer = $writer;

return $markdown;
}

}

You can tell phpspec this is how you want to construct the object as follows:

<?php

(continues on next page)

32 Chapter 10. Object Construction



phpspec Documentation, Release 5.x

(continued from previous page)

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Writer;

class MarkdownSpec extends ObjectBehavior
{

function it_outputs_converted_text(Writer $writer)
{

$this->beConstructedThrough('createForWriting', [$writer]);
$writer->writeText("<p>Hi, there</p>")->shouldBeCalled();

$this->outputHtml("Hi, there");
}

}

Where the first argument is the method name and the second an array of the values to pass to that method.

To be more descriptive, shorter syntaxes are available. All of the following are equivalent:

$this->beConstructedNamed('Bob');
$this->beConstructedThroughNamed('Bob');
$this->beConstructedThrough('Named', array('Bob'));

10.3 Overriding

To avoid repetition you can tell phpspec how to construct the object in let. However, you may have a single example
that needs constructing in a different way. You can do this by calling beConstructedWith again in the example.
The last time you call beConstructedWith will determine how phpspec constructs the object:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use Markdown\Writer;

class MarkdownSpec extends ObjectBehavior
{

function let(Writer $writer)
{

$this->beConstructedWith($writer, true);
}

function it_outputs_converted_text(Writer $writer)
{

// constructed with second argument set to true
// ...

}

function it_does_something_if_argument_is_false(Writer $writer)
{

$this->beConstructedWith($writer, false);
// constructed with second argument set to false

(continues on next page)

10.3. Overriding 33



phpspec Documentation, Release 5.x

(continued from previous page)

// ...
}

}

34 Chapter 10. Object Construction



CHAPTER 11

Matchers

You use matchers in phpspec to describe how an object should behave. They are like assertions in xUnit but with a
focus on specifying behaviour instead of verifying output. You use the matchers prefixed by should or shouldNot
as appropriate.

phpspec has 14 built-in matchers, described in more detail here. Many of these matchers have aliases which you can
use to make your specifications easy to read.

Custom matchers classes can be registered in configuration.

11.1 Identity Matcher

If you want to specify that a method returns a specific value, you can use the Identity matcher. It compares the result
using the identity operator: ===.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_be_a_great_movie()
{

$this->getRating()->shouldBe(5);
$this->getTitle()->shouldBeEqualTo("Star Wars");
$this->getReleaseDate()->shouldReturn(233366400);
$this->getDescription()->shouldEqual("Inexplicably popular children's film");

}
}

All four of these ways of using the Identity matcher are equivalent. There is no difference in how they work, this lets
you choose the one which makes your specification easier to read.

35



phpspec Documentation, Release 5.x

11.2 Comparison Matcher

The Comparison matcher is like the Identity matcher. The difference is that is uses the comparison operator ==. So it
is not as strict and follows the PHP rules for loose type comparison.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_be_a_great_movie()
{

$this->getRating()->shouldBeLike('5');
}

}

Using shouldBeLike it does not matter whether StarWars::getRating() returns an integer or a string. The
spec will pass for 5 and “5”.

11.3 Approximately Matcher

If you want to specify that a method returns a value that approximates to a certain precision the given value, you can
use the Approximately matcher.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_return_a_near_value()
{

$this->getRating()->shouldBeApproximately(1.444447777, 1.0e-9);
$this->getRating()->shouldBeEqualToApproximately(1.444447777, 1.0e-9);
$this->getRating()->shouldEqualApproximately(1.444447777, 1.0e-9);
$this->getRating()->shouldReturnApproximately(1.444447777, 1.0e-9);

}
}

The first argument is the value we expect, the second is the delta.

All four of these ways of using the Approximately matcher are equivalent. There is no difference in how they work,
this lets you choose the one which makes your specification easier to read.

11.4 Throw Matcher

You can describe an object throwing an exception using the Throw matcher. You use the Throw matcher by calling it
straight from $this, making the example easier to read.

36 Chapter 11. Matchers



phpspec Documentation, Release 5.x

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_not_allow_negative_ratings()
{

$this->shouldThrow('\InvalidArgumentException')->duringSetRating(-3);
}

}

You can also write this as:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_not_allow_negative_ratings()
{

$this->shouldThrow('\InvalidArgumentException')->during('setRating', array(-
→˓3));

}
}

The first argument of during is the method name and the second one is an array of values passed to the method.

You may want to specify the message of the exception. You can do this by passing an exception object to shouldThrow:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_not_allow_negative_ratings()
{

$this->shouldThrow(new \InvalidArgumentException("Invalid rating"))->during(
→˓'setRating', array(-3));

}
}

If you want to use the Throw matcher to check for exceptions thrown during object instantiation you can use the
duringInstantiation method.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
(continues on next page)

11.4. Throw Matcher 37



phpspec Documentation, Release 5.x

(continued from previous page)

class MovieSpec extends ObjectBehavior
{

function it_should_not_allow_negative_ratings()
{

$this->beConstructedWith(-3);
$this->shouldThrow('\InvalidArgumentException')->duringInstantiation();

}
}

You can also use the Throw matcher with named constructors.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_not_allow_negative_ratings()
{

$this->beConstructedThrough('rated', array(-3));
$this->shouldThrow('\InvalidArgumentException')->duringInstantiation();

}
}

11.5 Trigger Matcher

Let’s say you have the following class and a method which is deprecated

<?php

class Movie
{

function setStars($value)
{

trigger_error('The method setStars is deprecated. Use setRating instead', E_
→˓USER_DEPRECATED);

$this->rating = $value * 4;
}

}

You can describe an object triggering an error using the Trigger matcher. You use the Trigger matcher by calling it
straight from $this, making the example easier to read.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior

(continues on next page)

38 Chapter 11. Matchers



phpspec Documentation, Release 5.x

(continued from previous page)

{
function set_stars_should_be_deprecated()
{

$this->shouldTrigger(E_USER_DEPRECATED)->duringSetStars(4);
}

}

You may want to specify the message of the error. You can do this by adding a string parameter to the shouldTrigger
method :

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function set_stars_should_be_deprecated()
{

$this->shouldTrigger(E_USER_DEPRECATED, 'The method setStars is deprecated.
→˓Use setRating instead')->duringSetRating(4);

}
}

Note: As with the Throw matcher, you can also use the during syntax described in the Throw section, or use the
instantiation mechanisms (such as duringInstantiation, . . . etc)

11.6 Type Matcher

You can specify the type of the object you are describing with the Type matcher. You can also use this matcher to
check that a class implements an interface or that it extends a class.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_be_a_movie()
{

$this->shouldHaveType('Movie');
$this->shouldReturnAnInstanceOf('Movie');
$this->shouldBeAnInstanceOf('Movie');
$this->shouldImplement('Movie');

}
}

All four matcher methods are equivalent and will serve to describe if the object is a Movie or not.

11.6. Type Matcher 39



phpspec Documentation, Release 5.x

11.7 ObjectState Matcher

The ObjectState matcher lets you check the state of an object by calling methods on it. These methods should start
with is* or has* and return a boolean.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_be_available_on_cinemas()
{

// calls isAvailableOnCinemas()
$this->shouldBeAvailableOnCinemas();

}

function it_should_have_soundtrack()
{

// calls hasSoundtrack()
$this->shouldHaveSoundtrack();

}
}

The spec will pass if the object has isAvailableOnCinemas and hasSoundtrack methods which both return
true:

<?php

class Movie
{

public function isAvailableOnCinemas()
{

return true;
}

public function hasSoundtrack()
{

return true;
}

}

11.8 Count Matcher

You can check the number of items in the return value using the Count matcher. The returned value could be an array
or an object that implements the \Countable or \Traversable interface.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

(continues on next page)

40 Chapter 11. Matchers



phpspec Documentation, Release 5.x

(continued from previous page)

class MovieSpec extends ObjectBehavior
{

function it_should_have_one_director()
{

$this->getDirectors()->shouldHaveCount(1);
}

}

11.9 Scalar Matcher

To specify that the value returned by a method should be a specific primitive type you can use the Scalar matcher. It’s
like using one of the is_* functions, e.g, is_bool, is_integer, is_float, etc.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_have_a_string_as_title()
{

$this->getTitle()->shouldBeString();
}

function it_should_have_an_array_as_cast()
{

$this->getCast()->shouldBeArray();
}

}

11.10 IterableContain Matcher

You can specify that a method should return an array or an implementor of \Traversable that contains a given
value with the IterableContain matcher. phpspec matches the value by identity (===).

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_contain_jane_smith_in_the_cast()
{

$this->getCast()->shouldContain('Jane Smith');
}

}

11.9. Scalar Matcher 41



phpspec Documentation, Release 5.x

11.11 IterableKeyWithValue Matcher

This matcher lets you assert a specific value for a specific key on a method that returns an array or an implementor of
\ArrayAccess or \Traversable. phpspec matches both the key and value by identity (===).

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_have_jane_smith_in_the_cast_with_a_lead_role()
{

$this->getCast()->shouldHaveKeyWithValue('leadRole', 'John Smith');
}

}

11.12 IterableKey Matcher

You can specify that a method should return an array or an object implementing \ArrayAccess or \Traversable
with a specific key using the IterableKey matcher. phpspec matches the key by identity (===).

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_have_a_release_date_for_france()
{

$this->getReleaseDates()->shouldHaveKey('France');
}

}

11.13 IterateAs Matcher

This matcher lets you specify that a method should return an array or an object implementing \Traversable that
iterates just as the argument you passed to it. phpspec matches both the key and the value by identity (===).

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_contain_jane_smith_and_john_smith_in_the_cast()

(continues on next page)

42 Chapter 11. Matchers



phpspec Documentation, Release 5.x

(continued from previous page)

{
$this->getCast()->shouldIterateAs(new \ArrayIterator(['Jane Smith', 'John

→˓Smith']));
$this->getCast()->shouldYield(new \ArrayIterator(['Jane Smith', 'John Smith

→˓']));
}

}

Both of these ways of using the IterateAs matcher are equivalent. There is no difference in how they work, this lets
you choose the one which makes your specification easier to read.

11.14 IterateLike Matcher

This matcher lets you specify that a method should return an array or an object implementing \Traversable that
iterates equal to the arguments you passed to it. phpspec matches both the key and the element by value (==).

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_contain_jane_smith_and_john_smith_in_the_cast()
{

$this->getCast()->shouldIterateLike(new \ArrayIterator(['Jane Smith', 'John
→˓Smith']));

$this->getCast()->shouldYieldLike(new \ArrayIterator(['Jane Smith', 'John
→˓Smith']));

}
}

Both of these ways of using the IterateAs matcher are equivalent. There is no difference in how they work, this lets
you choose the one which makes your specification easier to read.

11.15 StartIteratingAs Matcher

This matcher lets you specify that a method should return an array or an object implementing \Traversable that
starts iterating just as the argument you passed to it. phpspec matches both the key and the value by identity (===).

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_contain_at_least_jane_smith_in_the_cast()
{

$this->getCast()->shouldStartIteratingAs(new \ArrayIterator(['Jane Smith']));

(continues on next page)

11.14. IterateLike Matcher 43



phpspec Documentation, Release 5.x

(continued from previous page)

$this->getCast()->shouldStartYielding(new \ArrayIterator(['Jane Smith']));
}

}

Both of these ways of using the StartIteratingAs matcher are equivalent. There is no difference in how they work, this
lets you choose the one which makes your specification easier to read.

11.16 StringContain Matcher

The StringContain matcher lets you specify that a method should return a string containing a given substring. This
matcher is case sensitive.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_have_a_title_that_contains_wizard()
{

$this->getTitle()->shouldContain('Wizard');
}

}

11.17 StringStart Matcher

The StringStart matcher lets you specify that a method should return a string starting with a given substring.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_have_a_title_that_starts_with_the_wizard()
{

$this->getTitle()->shouldStartWith('The Wizard');
}

}

11.18 StringEnd Matcher

The StringEnd matcher lets you specify that a method should return a string ending with a given substring.

44 Chapter 11. Matchers



phpspec Documentation, Release 5.x

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_have_a_title_that_ends_with_of_oz()
{

$this->getTitle()->shouldEndWith('of Oz');
}

}

11.19 StringRegex Matcher

The StringRegex matcher lets you specify that a method should return a string matching a given regular expression.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_have_a_title_that_contains_wizard()
{

$this->getTitle()->shouldMatch('/wizard/i');
}

}

11.20 Inline Matcher

You can create custom matchers by providing them in getMatchers method.

<?php

namespace spec;

use PhpSpec\ObjectBehavior;

class MovieSpec extends ObjectBehavior
{

function it_should_have_some_specific_options_by_default()
{

$this->getOptions()->shouldHaveKey('username');
$this->getOptions()->shouldHaveValue('diegoholiveira');

}

public function getMatchers(): array
{

(continues on next page)

11.19. StringRegex Matcher 45



phpspec Documentation, Release 5.x

(continued from previous page)

return [
'haveKey' => function ($subject, $key) {

return array_key_exists($key, $subject);
},
'haveValue' => function ($subject, $value) {

return in_array($value, $subject);
},

];
}

}

In order to print a more verbose error message your inline matcher should throw FailureException:

<?php

namespace spec;

use PhpSpec\ObjectBehavior;
use PhpSpec\Exception\Example\FailureException;

class MovieSpec extends ObjectBehavior
{

function it_should_have_some_specific_options_by_default()
{

$this->getOptions()->shouldHaveKey('username');
$this->getOptions()->shouldHaveValue('diegoholiveira');

}

public function getMatchers(): array
{

return [
'haveKey' => function ($subject, $key) {

if (!array_key_exists($key, $subject)) {
throw new FailureException(sprintf(

'Message with subject "%s" and key "%s".',
$subject, $key

));
}
return true;

}
];

}
}

46 Chapter 11. Matchers



CHAPTER 12

Templates

phpspec can generate code snippets that will save you time when specifying classes. The default templates will be
suitable for many use cases.

However in some cases, it’ll be useful to customize those templates by providing ones that suit your project require-
ments. For example, you may need to add licence information in a docblock to every class file. Instead of doing this
manually you can modify the template so it is already in the generated file.

12.1 Overriding templates

phpspec uses three templates:

• specification - used when a spec is generated using the describe command

• class - used to generate a class that is specified but which does not exist

• method - used to add a method that is specified to a class

You can override these on a per project basis by creating a template file in .phpspec in the root directory of the project.
For example, to add licence information to the docblock for a class, you can create a file {project_directory}/
.phpspec/class.tpl. You can copy the contents of the default template found in phpspec at src/PhpSpec/
CodeGenerator/Generator/templates/class.template and add the docblock to it:

<?php

/*
* This file is part of Acme.

*
* For the full copyright and license information, please view the LICENSE

* file that was distributed with this source code.

*/%namespace_block%

class %name%
{
}

47



phpspec Documentation, Release 5.x

So now, for example, you want to describe a class Acme\Model\Foo which does not exist. You can run the spec
spec/Acme/Model/FooSpec.php and let phpspec generate the missing class. phpspec will use your overridden
template and the generated file will look like:

<?php

/*
* This file is part of Acme.

*
* For the full copyright and license information, please view the LICENSE

* file that was distributed with this source code.

*/

namespace Acme\Model;

class Foo
{
}

You can also override the templates for all your projects by creating a template in .phpspec in your home directory.

phpspec uses the first template it finds by looking in this order:

1. {project_directory}/.phpspec/{template_name}.tpl

2. {home_directory}/.phpspec/{template_name}.tpl

3. The default template

12.2 Parameters

As well as static text there are some parameters available like the %namespace_block% in the example above. The
parameters available depend on which type of template you are overriding:

specification

• %filepath% the file path of the class

• %imports% the alphabetically sorted imports

• %name% the specification name

• %namespace% the specification namespace

• %subject% the fully-qualified name of the class being specified

• %subject_class% the name of the class being specified

class

• %filepath% the file path of the class

• %name% the class name

• %namespace% the class namespace

• %namespace_block% the formatted class namespace

method

• %name% the method name

• %arguments% the method arguments

48 Chapter 12. Templates



CHAPTER 13

Extensions

Extensions can add functionality to phpspec, such as, integration with a particular framework. See below for some
example extensions.

13.1 Installation

Individual extensions will have their own documentation that you can follow. Usually you can install an extension by
adding it to your composer.json file and updating your vendors.

13.2 Configuration

You will need to tell phpspec that you want to use the extension. You can do this by adding it to the config file:

extensions:
MageTest\PhpSpec\MagentoExtension\Extension: ~

You can pass options to the extension as well:

extensions:
MageTest\PhpSpec\MagentoExtension\Extension:

mage_locator:
src_path: public/app/code
spec_path: spec/public/app/code

See the Configuration Cookbook for more about config files.

49



phpspec Documentation, Release 5.x

13.3 Example extensions

13.3.1 Framework Integration

• Symfony2

• Magento

• Laravel

13.3.2 Code generation

• Typehinted Methods

• Example Generation

• SpecGen

13.3.3 Additional Formatters

• Nyan Formatters

13.3.4 Metrics

• ‘Code coverage <https://github.com/<maintainer_missing>/phpspec-code-coverage>‘_

13.3.5 Matchers

• Coduo matcher extension

• Array Contains matcher extension

• Collection of custom matchers

13.3.6 Miscellaneous

• Prepare

• Data provider

• Behat Integration

• Example skipping through annotation

• Annotation

50 Chapter 13. Extensions

https://github.com/phpspec/Symfony2Extension
https://github.com/MageTest/MageSpec
https://github.com/BenConstable/phpspec-laravel
https://github.com/ciaranmcnulty/phpspec-typehintedmethods
https://github.com/richardmiller/ExemplifyExtension
https://github.com/memio/spec-gen
https://github.com/phpspec/nyan-formatters
https://github.com/coduo/phpspec-matcher-extension
https://github.com/jameshalsall/phpspec-array-contains-matchers
https://github.com/karriereat/phpspec-matchers
https://github.com/coduo/phpspec-prepare-extension
https://github.com/coduo/phpspec-data-provider-extension
https://github.com/richardmiller/BehatSpec
https://github.com/akeneo/PhpSpecSkipExampleExtension
https://github.com/drupol/phpspec-annotation


CHAPTER 14

Working with Wrapped Objects

phpspec wraps some of the objects used in specs. For example $this is the object you are describing wrapped in a
phpspec object. This is how you can call methods on $this and then call matchers on the returned values.

Most of the time this is not something you need to worry about but sometimes it can be an issue.

If you ever need to get the actual object then you can by calling $this->getWrappedObject().

If you try to specify a method on your object that starts with “should”, for example:

function it_should_handle_something($somethingToHandle)
{

$this->shouldHandle($somethingToHandle);
}

Then this will not work as expected because phpspec will intercept the call thinking it is a matcher. You can avoid
this by using callOnWrappedObject:

function it_should_handle_something($somethingToHandle)
{

$this->callOnWrappedObject('shouldHandle', array($somethingToHandle));
}

51


	Introduction
	Installation
	Getting Started
	Prophet Objects
	Let and Let Go
	Upgrading to PhpSpec 4
	Upgrading to phpspec 3
	Configuration
	Running phpspec
	Object Construction
	Matchers
	Templates
	Extensions
	Working with Wrapped Objects

